OTTOLINE LEYSER Botany

Ottoline Leyser image
Subject
Botany
College positions
Fellow
University positions
Regius Professor of Botany
Email Address

Biography

Currently on secondment as CEO of UK Research and Innovation.

Areas of academic interest

Plants literally build themselves out of thin air and water. They collect carbon dioxide from the air and water and minerals from the soil, and use light energy to convert these basic ingredients into the 1000s compounds they need to grow.  This depends on large surface areas above and below ground.

The requirement for large below-ground surface area means that plants can't move. Immobility creates two problems. The first is the need to adapt to the local environment since plants can’t simply go and find a better one. The second is the difficulty in defending themselves from predation, given that they can’t run away. Plants have solved these twin problems through highly modular continuous development, giving them immense flexibility of form, with no unique parts. This however, creates a new problem- how to make decisions with no central processing. Instead of a central brain, plants use a network of interacting systemically mobile hormones to make decisions about how to invest their limited resources in optimal growth and development decisions. My research focusses on how this decision-making system works, using the control of shoot branching as a model system.

Beyond my research, I have a long-term interest in how to foster optimal research and innovation cultures that support high quality, creative and effective research and innovation. This interest motivated my secondment to UK Research and Innovation.

Department Webpage

Academic Honours

Academies
Fellow of the Royal Society
Foreign Associate, National Academy of Sciences USA
Member of the European Molecular Biology Organisation
Member of the Leopoldina
Honorary Fellow of the Academy of Medical Sciences
Member of the Academia Europaea

Prizes
Society for Experimental Biology President’s Medal
International Plant Growth Substance Association Silver Medal
Royal Society Rosalind Franklin Award
UK Genetics Society Medal
British Society for Developmental Biology Waddington Medal
FEBS/EMBO Women in Science Award

Honorary Doctorates
Swedish Agricultural University
Norwegian University of Science and Technology
University of Aberdeen
University of Guelph

 

Further Information

Selected publications

Shinohara N, Taylor C, Leyser O (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein, PIN1, from the plasma membrane. PLoS Biology 11(1): e1001474. doi:10.1371/journal.pbio.1001474

De Jong M, George G, Ongaro V, Williamson L, Willetts B, Ljung K, McCulloch H, Leyser O. (2014) Auxin and strigolactone signaling are required for modulation of Arabidopsis shoot branching by N supply. Plant Physiology 166: 384-395

Müller D, Waldie T, Miyawaki K, To JPC, Melnyk CW, Kieber JJ, Kakimoto T, Leyser O (2015) Cytokinin is required for escape but not release from auxin mediated apical dominance. Plant Journal 82:874-886

Bennett T, Hines G, van Rongen M, Waldie T, Sawchuk MG, Scarpella E, Ljung K, Leyser O (2016) Connective auxin transport in the shoot facilitates communication between shoot apices. PLoS Biology 14(4): e1002446

Bennett T, Liang Y, Seale M, Ward S, Müller D, Leyser O (2016) Strigolactone regulates shoot development through a core signalling pathway. Biology Open 5: 1806-1820

Leyser O (2016) Angiosperm multicellularity: the whole, the parts and the sum. In The Evolution and Consequences of Multicellularity, Eds. Niklas and Newman, Vienna Series of Theoretical Biology, MIT Press pp 87-102

Seale M, Bennett T, Leyser O (2017) BRC1 expression regulates bud activation potential, but is not necessary or sufficient for bud dormancy in Arabidopsis. Development 144: 1661-1673

Waldie T, Leyser O (2018) Cytokinin targets auxin transport to promote shoot branching. Plant Physiology 177: 803-818

van Rongen M, Bennett T, Ticchiarelli F, Leyser O (2019) Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1. PLoS Genetics 15(3): e1008023

de Jong M, Tavares H, Pasam R, Butler R, Ward S, George G, Melnyk CW, Challis R, Kover P, Leyser O (2019) Natural Variation in Arabidopsis shoot branching plasticity in response to nitrate supply affects fitness. PLoS Genetics 15(9): e1008366

Leyser O (2020) The Excellence Question . Science  370: 886-886